Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway

نویسندگان

  • Yi Sun
  • Chi-Wai Lau
  • Yingli Jia
  • Yingjie Li
  • Weiling Wang
  • Jianhua Ran
  • Fei Li
  • Yu Huang
  • Hong Zhou
  • Baoxue Yang
چکیده

Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by N(ω)-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Differential effects of nitric oxide synthase inhibitors on endothelium-dependent and nitrergic nerve-mediated vasodilatation in the bovine ciliary artery.

BACKGROUND AND PURPOSE We have previously demonstrated that L-NMMA (NG-monomethyl-L-arginine) selectively inhibits vasodilatation produced by endothelium-derived nitric oxide but not nitrergic nerves in the bovine penile artery. The present study investigated whether L-NMMA had a similar selective action in the bovine ciliary artery. We also investigated whether two recently introduced inhibito...

متن کامل

Dysregulation of l-arginine metabolism and bioavailability associated to free plasma heme

Severe Plasmodium falciparum malaria is associated with hypoargininemia, which contributes to impaired systemic and pulmonary nitric oxide (NO) production and endothelial dysfunction. Since intravascular hemolysis is an intrinsic feature of severe malaria, we investigated whether and by which mechanisms free heme [Fe(III)-protoporphyrin IX (FP)] might contribute to the dysregulation of L-argini...

متن کامل

Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway.

BACKGROUND/AIMS Vascular endothelial growth factor (VEGF) is an endothelium-specific peptide that stimulates angiogenesis via two receptor tyrosine kinases, Flt-1 and KDR. Endothelial nitric oxide synthase (eNOS) plays a major role in VEGF signaling. Delivery of arginine to membrane bound eNOS by the cationic amino acid transporter-1 (CAT-1) has been shown to modulate eNOS activity. The current...

متن کامل

Arginine Metabolism: Enzymology, Nutrition, and Clinical Significance L-Arginine and Atherothrombosis

L-arginine, the principal substrate for endothelial nitric oxide synthase, is oxidized to L-citrulline and nitric oxide. Endothelial dysfunction is associated with decreased bioactive nitric oxide production, an abnormality observed in atherothrombosis. Acute or chronic administration of supplemental L-arginine enhances endothelial nitric oxide production and improves endothelial function in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016